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We suggest a new difference scheme for dealing with contact nonlinear
Hamiltonians. The scheme has two parts. First, the system is transformed to the
interaction picture of quantum mechanics using the time-independent Hamiltonian
H0. This reduces the problem to a system of ordinary differential equations in time.
Subsequently, the system is integrated in time for a time step1t and then trans-
formed back to the initial representation. Standard time integration schemes make
it possible to eliminate explicit use of transformation operators, thus significantly
reducing the number of calculations. We give explicit expressions for integration
using the Runge–Kutta scheme. We consider three applications of the method and
illustrate the behavior of the norms of the resulting wave functions after many time
steps. The method is compared to the standard split-step method, and we show that
our method has fiveN(u0(τ ))more calculations in a single step of the scheme, for the
simplest case of one time and one spatial dimension. HereN(u0(τ )) is the number
of calculations needed to apply the evolution operatoru0(τ ) to the wave function,
whereu0 is defined in terms of the (time-independent) Hamiltonian. This increase in
the number of steps is offset by at least one order higher accuracy of the method. Its
implementation is straightforward. It uses a unique arrangement of the steps of the
split-step method. c© 2001 Academic Press

Key Words: partial differential equations; difference methods; nonlinear
Hamiltonians; Bose–Einstein condensation.

1. INTRODUCTION

Numerical methods have been widely applied to many different types of problems in
quantum mechanics. Some of the more complex problems involve partial differential equa-
tions in time and at least one spatial dimension. In order to solve these problems, a standard
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approach is to discretize the wave functions, i.e., to replace them by a vector of values at
particularly chosen points in time and space, and to use the difference approximation to
construct the operators; see [1, 2]. In one spatial dimension, if the wave function has been
sampled atN + 1 equidistant points{xj } j=0..N , at the given timet , then

ϕ(t, x)→ [ϕ(t, x0), ϕ(t, x1), . . . , ϕ(t, xN)]. (1)

The kinetic and potential energy are the most often encountered operators in quantum
mechanics. Discretization diagonalizes the potential operatorV(x) making it local. The
operators that incorporate spatial partial derivatives of any order, such as momentum or
kinetic energy become nonlocal; i.e., their value at a given point depends not only on the
values of the wave function at that point, but also on its neighboring values. The kinetic
energyT , which contains the second-order spatial derivatives, when discretized to the
second-order inh (h being the distance between the two successive points) becomes

Tϕ(t, xj ) ∝ ∂2ϕ

∂x2
(t, xj ) = ϕ(t, xj+1)− 2ϕ(t, xj )+ ϕ(t, xj−1)

h2
+ O(h2). (2)

The form of these operators depends on the choice of boundary conditions; one can keep
the value of the wave function at the boundaries fixed (usually zero), or one can impose
periodicity. If the wave functions are localized far from the boundaries, these approaches
are equivalent.

In one spatial dimension, for fixed values of the wave function at the boundaries, the
kinetic energy operator becomes a(N + 1)-dimensional tridiagonal square matrix. We thus
obtain a discretized version of the operatorH0. The evolution of the initial wave function
is found by applying the operator

u0(τ ) = e−i H0τ . (3)

However, to obtain a numerically stableu0(τ ), one has to use the well-known approximation
[2, 5]

u0(τ ) '
(

1+ i
τ

2
H0

)−1(
1− i

τ

2
H0

)
, (4)

which is correct up to the orderO(τ 2) in time. To circumvent the problems of storing
the matrix and calculating the inverse of such a large sparse matrix, this operator is not
calculated at all. Instead, for any given vectorf (0), the result after applying the operator
u0(τ ) is given as the solution of the linear system(

1+ i
τ

2
H0

)
f (τ ) =

(
1− i

τ

2
H0

)
f (0). (5)

This simplifies the evaluation of the vectorf (τ ) because the storage requirement for the
operatoru0 is O(N) and the evolution of the vectorf (0) is also obtained inO(N) steps.

For more than one interacting field or a nonlinear interaction, this straightforward inte-
gration becomes impractical if not impossible. One example of such systems is the Bose
condensate, whose starting point is one or more Gross–Pitaevskii equations, e.g., [6] and
references therein. Analytical solutions of these equations exist only for the case of no
external potential. Thus, one relies heavily on numerics in investigations of such systems.
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The methods most often used belong to the class of so-called split-step methods. Recall the
split-step method in [3] and let us consider the one-dimensional initial value problem

i
∂ϕ

∂t
= H0ϕ +W[t, ϕ],

(6)
ϕ(0, x) = f (x), x ∈ 〈−L , L〉.

Here, L represents the relevant size of the physical system and is usually a result of a
truncation of the domain of the original problem (because the functions and the operators
may have been defined over the whole〈−∞,∞〉 range). Numerical integration using the
split-step method starts with the following integration:

ϕ1(tk) = ϕ(tk),

tk ≤ t ≤ tk +1t, i
∂ϕ1

∂t
= H0ϕ1.

(7)

This solution is used for the second step, where

ϕ2(tk) = ϕ1(tk +1t),

tk ≤ t ≤ tk +1t, i
∂ϕ2

∂t
= W[t, ϕ2].

(8)

At the end, the so-calculatedϕ2(tk +1t) is used asϕ(tk +1t). This effectively reduces to
propagating the wave function over the same time interval1t , while neglecting one or the
other operator,H0 or W. This heuristic approach has the inherent problem that the splitting
of the evolution into two parts introduces an error of the order ofO(1t2), the long-term
effects of which are hard to evaluate a priori. Calculations have to be repeated for a variety
of 1x and1t values in search of satisfactory convergence.

The question of whether it is possible to improve this basic split-step scheme without
introducing additional steps was what led us to the development of the numerical method
which we present here. Our method is based on the interaction picture of quantum mechanics.
In Section II we give a brief exposition of the interaction picture followed by a derivation of
method in the single field case. These concepts are then extended to more interacting fields
and more dimensions. Subsequently, we give three examples of the successful application
of the method. Section III is a discussion of the method and its comparison to the split-step
method as well as a discussion of the numerical properties of the method.

2. THE INTERACTION PICTURE IN QUANTUM MECHANICS

AND ITS NUMERICAL IMPLEMENTATION

Consider the initial value problem in one spatial dimension, involving a time-independent
HamiltonianH0 acting on fieldϕ(t, x), together with some contact interaction operatorW,
which is nonlinear in the fieldϕ(t, x):1

i
∂ϕ

∂t
= H0ϕ +W[t, ϕ],

(9)
ϕ(0, x) = f (x), x ∈ 〈−L , L〉.

1 If W is linear in the fieldϕ(t, x), i.e.,W[t, ϕ] = W[t, x]ϕ(t, x), the interaction picture is not needed, at least
from the numerical point of view.
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Here by the term contact (interaction) operator it is assumed that the result of the action
of the operator at a particular point(Ex, t) on a wave functionϕ depends only on the value
of the same wave function at that particular point. For example, differential operators or
nonlocal potentials are excluded from this set of operators. We eliminateH0 in Eq. (9) via
a transformation of the wave functionϕ(t),

ϕ(t) = e−i H0t ϕ̃(t), (10)

so that the equation for the transformed wave function ˜ϕ(t, x) becomes

i
∂ϕ̃

∂t
= ei H0t W[t, e−i H0t ϕ̃]. (11)

This transformation of the Eq. (9) corresponds to what is known as the interaction picture
in quantum mechanics; see, e.g., [7]. We now examine how we can utilize this formula in
a numerical scheme.

2.1. Derivation of the Method

Let us first examine the equation of propagation of a wave function over the time interval
[tk, tk+1], for somek ∈ N. For 0≤ τ ≤ 1t , we have

i
∂ϕ̃(tk + τ)

∂τ
= ei H0(tk+τ)W

[
tk + τ, e−i H0(tk+τ)ϕ̃(tk + τ)

]
. (12)

We introduce a new wave function ˆϕ(τ) which serves as a dummy variable2 for the time
integration. It is defined by

ϕ̂(τ ) = e−i H0tk ϕ̃(tk + τ), (13)

whose evolution is described by

i
∂ϕ̂(τ )

∂τ
= ei H0τW[tk + τ, e−i H0τ ϕ̂], (14)

with the initial conditions

ϕ̂(0) = e−i H0tk ϕ̃(tk) = ϕ(tk). (15)

The operatorW is a contact operator, in the sense described earlier, so the time integration
of the Eq. (14) can be performed using a standard ODE integration method [4].

This applied to the array of functions ˆϕ(τ) = {ϕ̂(τ, xj )} j=0...N yields the array ˆϕ(1t) =
{ϕ̂(1t, xj )} j=0...N . Let us see how this solution is related to the solution we are interested
in (in the Schroedinger picture); i.e.,ϕ(tk +1t) = ϕ(tk+1).

First observe

ϕ̂(1t) = e−i H0tk ϕ̃(1t) = e−i H0tkei H0(tk+1t)ϕ(tk +1t). (16)

2 Using this function as the dummy variable renders its indexing with respect to the absolute timet j , j = 1 . . .M
unnecessary. As it follows from the scheme, its values are discarded at the end of the evolution by1t once the
wave functionϕ(tk +1t) is calculated.
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then

ϕ(tk+1) = ϕ(tk +1t) = e−i H01t ϕ̂(1t). (17)

This is our final result. Let us summarize it.
The numerical solution of the initial value problem

i
∂ϕ

∂t
= H0ϕ +W[t, ϕ],

(18)
ϕ(0, x) = f (x), x ∈ 〈−L , L〉,

for time [tk, tk +1t ] is thus equal to the solution of the following initial value problem

i
∂ϕ̂(τ )

∂τ
= ei H0τW[tk + τ, e−i H0τ ϕ̂(τ )]

(19)
0≤ τ ≤ 1t,

for

ϕ̂(0) = ϕ(tk), (20)

yielding

ϕ(tk+1) = ϕ(tk +1t) = e−i H01t ϕ̂(1t). (21)

This concludes the derivation of the method. We now proceed to the question of the choice
of time integration scheme and its effects.

2.2. Implementation of the Method

We apply the standard Runge–Kutta fourth-order scheme for the time integration of
Eq. (19). We useu0 from Eq. (3). This yields

y′1 = −iW[tk, ϕ(tk)],

y′2 = −iu−1
0

(
1t

2

)
W

[
tk + 1t

2
, u0

(
1t

2

)(
ϕ(tk)+ 1t

2
y′1

)]
,

(22)

y′3 = −iu−1
0

(
1t

2

)
W

[
tk + 1t

2
, u0

(
1t

2

)(
ϕ(tk)+ 1t

2
y′2

)]
,

y′4 = −iu−1
0 (1t)W[tk +1t, u0(1t)(ϕ(tk)+1ty′3)].

The final result of the time evolution becomes

ϕ(tk +1t) = u0(1t)

(
ϕ(tk)+ 1t

6
(y′1+ 2y′2+ 2y′3+ y′4)

)
. (23)

The problem with Eq. (22) is that both operators,u0 andu−1
0 , are present. This can be

avoided if one examines more carefuly Eq.(23). There is a multiplication byu0(1t) of
all parts that come from the Runge–Kutta scheme that cancels the inverse ofu0. Taking
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this into account before applying the Runge–Kutta scheme yields computationally simpler
equations:

Y′1 = −iW[tk, ϕ(tk)],

Y′2 = −iW

[
tk + 1t

2
, u0

(
1t

2

)(
ϕ(tk)+ 1t

2
Y′1

)]
,

(24)
Y′3 = −iW

[
tk + 1t

2
, u0

(
1t

2

)
ϕ(tk)+ 1t

2
Y′2

]
,

Y′4 = −iW

[
tk +1t, u0

(
1t

2

)(
u0

(
1t

2

)
ϕ(tk)+1tY′3

)]
.

Using this in Eq. (23) yields

ϕ(tk +1t) = u0(1t)

(
ϕ(tk)+ 1t

6
Y′1

)
+ 1t

3
u0

(
1t

2

)
(Y′2+ Y′3)+

1t

6
Y′4. (25)

This formula is the final result of this paper.
The error order of the method is the smaller of the error orders of Runge–Kutta,O(1t5),

and the error in the numerical approximation ofu0. If finite differences are used for theu0,
which was the case in this paper, then the error order isO(1t3,1h2). Observe, however,
that this can be improved by using alternative approaches, like spectral method or FFT. This
is considered a technical detail that does not change the nature of the method, as presented
in this paper, and can be the topic of further research.

2.3. More Interacting Fields, More Dimensions

Consider the case ofN interacting fields,{ϕi }Ni=1 and their HamiltoniansH0,i +Wi . The
contact interaction between the fields can generally be written as

Wi = Wi
[
x, t; {ϕk(x, t)}Nk=1

]
. (26)

The equations are written in the same manner as for the single field. This time, though, each
field has its own “interaction picture” operatorH0,i . The system of equations we solve is
thus

i
∂ϕ̂ j (τ )

∂τ
= ei H0, j τWj

[
tk + τ, {e−i H0,kτ ϕ̂k(τ )}Nk=1

]
, j = 1 . . . N

0≤ τ ≤ 1t,
(27)

where the initial conditions are the same

ϕ̂ j (0) = ϕ j (tk), j = 1 . . . N, (28)

and

ϕ j (tk+1) = ϕ j (tk +1t) = e−i H0, j1t ϕ̂ j (1t), j = 1 . . . N. (29)

After the time integration scheme is chosen, each step in the time evolution scheme is
evaluated for all fields at once, and then these results are used for the next step.
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The method has a very simple extension to more dimensions if the operatorW is a contact
operator, in the sense defined earlier, and if the HamiltonianH0 is separable coordinatewise.

Coordinate separability of theH0 means the operatorH0 can be written as a sum of co-
ordinate pieces; i.e.,H0 = H0(∂Ex, Ex) =

∑
j H0, j (∂ j , xj ). This separability implies that the

evolution operator due toH0, u0(1t) = exp(− i
h̄ H01t) can be factorized into the product of

coordinate evolution operators; i.e.,u0(1t) =∏ j u0, j (1t). However, when applying this
mathematical identity to a particular matrix representation of the operator, some caution is
due. For example, if a finite difference method is used for a two-dimensional calculation, then
the matricesu0,x andu0,y do not commute, except in a special case of a spherically symmet-
ric potential. To remedy this lack of commutation the following can be done: (i) the operator
u0 can be symmetrized, e.g., in two dimensionsu0,(x,y) = 1

2(u0,xu0,y + u0,yu0,x) or (ii) the
HamiltonianH0 can be conveniently chosen so that its coordinate pieces,H0, j ’s, do com-
mute even when discretized and written in matrix form. As an example of the latter one
may use only the kinetic (energy) part as the operatorH0, while adding the potentialV(Ex)
to the operatorW.

2.4. Examples

We give three examples of the use of the method to point out its advantages and indicate
possible problems. We have chosen examples from our numerical research in the field of
Bose–Einstein condensation. Throughout we use the Runge–Kutta fourth-order method for
time integration.

Example I is the calculation of the ground state of the Bose condensed system in one
spatial dimension. Our method is modified in such a way that the evolution occurs in
complex time instead of real time. To compensate for the loss of norm at every step the
wave function is normalized. We solve

H0 = −1

2

∂2

∂x2
+ 1

2
x2,

(30)
W[ϕ] = 4πa0|ϕ|2ϕ.

The initial density, given by the ground state of the harmonic oscillator, and the final density
of the fieldϕ(x) are given in Fig. 1. The values of the parameters area0 = 5, L = 28.5, N =
1024,1t = 0.01.

Examples II and III demonstrate the behavior of the most common error in this type of
calculation, preservation of the norm of the wave function. In Example II, the wave function
found in Example I is propagated 500,000 steps. Figure 2 shows the dependence of the norm
on the number of steps. Example III is the most intricate. Here we show the solution to a
system of coupled harmonic oscillators with nonlinear second harmonic generation. The
operators for the fieldϕ(x)are

H0,ϕ = −1

2

∂2

∂x2
+ 1

2
x2,

(31)
Wϕ = −Kϕ∗ψ,

and the fieldψ(x, t)

H0,ψ = −1

4

∂2

∂x2
+ x2− δ,

(32)
Wψ = −Kϕ2.



ALTERNATIVE NUMERICAL METHOD 305

FIG. 1. The density of the atomic Bose condensate in ground state, Example I, obtained by evolution in
complex time. The values of the numerical parameters area0 = 5, L = 28.5, N = 1024,1t = 0.01.

FIG. 2. Behavior of the norm of the wave function of the atomic Bose condensate, Example II—Slightly
perturbed ground state used as the initial condition and propagated for 500,000 iterations. The numerical parameters
area0 = 5, L = 28.5, N = 1024,1t = 0.002.
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FIG. 3. Squared norm behavior of the distribution functions for fieldsϕ (Norm AWF),ψ (Norm MWF), and
their sum (AWF+MWF), as the function of time, as described in Example III. The distribution functions are
propagated for 500,000 iterations, using Eqs. (31) and (32). The numerical parameters areL = 28.5, N = 1024,
1t = 0.01,δ = 2, K = 1.

The initial condition is the ground state obtained by evolving the same system of equa-
tions in complex time. Then a random perturbation of 10% of the local amplitude is intro-
duced. The values of all parameters were the same as those for Examples I and II, while
the new parametersδ and K have the values 2 and 1, respectively. The behavior of the
norm of the wave functions is shown in Fig. 3 calculated for 500,000 iterations. In this
case the error in the norm becomes nonnegligible after someN ∼ 150,000 iterations. This
growth of norm was actually used as an indicator of chaos in the system. This behavior
was expected based on the theoretical analysis of the system over the considered range of
parameters.

3. DISCUSSION

In this section we compare the method to one of the standard approaches in dealing with
nonlinear Hamiltonians, the so-called split-step group of methods. In the Introduction, we
indicated how the method would be implemented for a typical problem. Consider solving
the initial value problem, with the splitting along the lines outlined in Eqs. (7) and (8),3

where the Runge–Kutta fourth-order method is used for time integration of the nonlinear
part. Then a propagation of the solution,ϕ(tk), for the time step1t would consist of the
calculations

3 Here alternative splittings are possible. One of the faster splittings is that using asH0 only a kinetic energy
operator. Evolution under action of this operator is then performed using a FFT scheme.
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y′1 = −iW[tk, ϕ(tk)],

y′2 = −iW

[
tk + 1t

2
, ϕ(tk)+ 1t

2
y′1

]
,

(33)

y′3 = −iW

[
tk + 1t

2
, ϕ(tk)+ 1t

2
y′2

]
,

y′4 = −iW[tk +1t, ϕ(tk)+1t y′3],

so that

ϕ2(tk +1t) = ϕ(tk)+ 1t

6
(y′1+ 2y′2+ 2y′3+ y′4). (34)

This is followed by the evolution due to theH0 for the time step1t , resulting in

ϕ(tk +1t) = u0(1t)

(
ϕ(tk)+ 1t

6
(y′1+ 2y′2+ 2y′3+ y′4)

)
. (35)

Compare the split-step method, Eqs. (33) to the proposed method

Y′1 = −iW[tk, ϕ(tk)],

Y′2 = −iW

[
tk + 1t

2
, u0

(
1t

2

)(
ϕ(tk)+ 1t

2
Y′1

)]
,

(36)

Y′3 = −iW

[
tk + 1t

2
, u0

(
1t

2

)
ϕ(tk)+ 1t

2
Y′2

]
,

Y′4 = −iW

[
tk +1t, u0

(
1t

2

)(
u0

(
1t

2

)
ϕ(tk)+1tY′3

)]
,

with the final result

ϕ(tk +1t) = u0(1t)

(
ϕ(tk)+ 1t

6
Y′1

)
+ 1t

3
u0

(
1t

2

)
(Y′2+ Y′3)+

1t

6
Y′4. (37)

One observes that our method has five more operations in which the operatorsu0(1t) or
u0(1t/2) act on the wave functions. The time integration, on the other hand, has the same
number of operations for both methods.

In our opinion, the advantages of our method outweigh the advantages of the splitstep
method for this particular class of the problems. We improved the accuracy by at least
one order, through only a slightly larger number of computations. Finally, due to the good
numerical properties of the operatoru0(1t), for long time iterations, stability of the itera-
tions can be insured by careful examination of the problem and suitable choice of the time
integration scheme.
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